
Revision 12 5/31/2017 Unified Web Services Model for UMBC DoIT 

Page 1 of 3 
 

Unified Web Services Model for UMBC DoIT 

Introduction 
REX takes in data across UMBC and stores it, and does so extremely effectively. For end-users, it is 

convenient to access data through the reporting interfaces. However, the server-server interaction model has 
not been fully developed, leading to ad-hoc interfacing requests. There is a need for a consistent, 
comprehensive interface for accessing stored data about students in server-side applications for use cases 
such as mitigating errors in user-supplied bio/demo data in DocuSign forms, myUMBC portal access, and 
other external integrations including Civitas (College Scheduler). 

Scope 
This model aims to describe an interaction method targeted at server-side applications such as 

myUMBC. It should provide consistent interface for accessing and aggregating several data sources including 
both REX and PeopleSoft. This project will not 

Example Scenario 
As-Is 
 Suppose that Financial Aid has a form that requires a student (the user) to input their name, address, 
and income from on-campus jobs. In the current interaction model, the static form would be provided by 
DocuSign, which would display the form to the user who would then manually enter this information. 
Financial Aid would only be able to catch errors in the data after the form was submitted by manually 
checking against the various systems that contain the data that the user has now duplicated. 

Proposed 
 The same form as above is used in this example. However, instead of being statically generated, the 
DocuSign server, as authenticated by an OAuth or Shibboleth service account, and authorized by that 
account’s permissions in LDAP, calls the UWS API Bus on behalf of the user to dynamically fill the form with 
verified information, using a REST method (e.g. GET https://uws.umbc.edu/user/{UID}/address). 
The UWS then behind the scenes securely executes SQL in REX to provide the most up-to-date version of this 
data available without the risk of the user mistyping and requiring the form to be resubmitted. 

Current Revision 
Description 6/28/17 
A prototype of this system is currently deployed as a PSGI application on umbc.in for development purposes. 
The codebase is currently approximately 800 lines of Perl, with an additional 400 lines of views. Seven 
endpoints have been deployed allowing proof-of-concept access to REX, introspection on schemas, and 
access to web services. A web service can be deployed end to end in the web browser. Based on testing on a 
dual core VM with 4GB RAM, the service is capable of serving 3000 queries per minutes, and is limited by CPU 
available on its current hosting. No authentication is currently used on the API endpoints, but the 
configuration interface is behind basic authentication. 



Revision 12 5/31/2017 Unified Web Services Model for UMBC DoIT 

Page 2 of 3 
 

 

Figure 1: The Unified Web Services model

 

Figure 2: Unified Web Services Server Architecture 

Infrastructure Server Applications 
Load Balancer Linux (CentOS), 4GB RAM Nginx, nginx-http-shibboleth, 

nginx-google-oauth, and Lua 
Router Linux (CentOS), 8GB RAM, 5GB 

disk 
Perl, Dancer2, and Starman or 
Java, Java Spark (not Apache 
Spark), and JDBC 

Authentication

•Shibboleth ECP
•Two-legged OAuth

Authorization

•Permissions model
•LDAP Roles

Unified Web 
Service API Bus

•Basic: REST Methods corresponding to common use cases
•XML/JSON interchange formats
•Enhanced: Query Builder
•Query logging for reuse, caching and auditing

Data
Sources

•REX
•PeopleSoft SA & HR
•LDAP & others

Data Sources

Router

VM1 VM2 ...

Authentication & Load Balancer

Server



Revision 12 5/31/2017 Unified Web Services Model for UMBC DoIT 

Page 3 of 3 
 

Database Can be on the same server as the 
router for testing 

Sqlite3, PostgreSQL, or MySQL 

Figure 3: Infrastructure 


	Unified Web Services Model for UMBC DoIT
	Introduction
	Scope
	Example Scenario
	As-Is
	Proposed

	Current Revision
	Description 6/28/17



